2x^2=(3x+7)(x+2)

Simple and best practice solution for 2x^2=(3x+7)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2=(3x+7)(x+2) equation:



2x^2=(3x+7)(x+2)
We move all terms to the left:
2x^2-((3x+7)(x+2))=0
We multiply parentheses ..
2x^2-((+3x^2+6x+7x+14))=0
We calculate terms in parentheses: -((+3x^2+6x+7x+14)), so:
(+3x^2+6x+7x+14)
We get rid of parentheses
3x^2+6x+7x+14
We add all the numbers together, and all the variables
3x^2+13x+14
Back to the equation:
-(3x^2+13x+14)
We get rid of parentheses
2x^2-3x^2-13x-14=0
We add all the numbers together, and all the variables
-1x^2-13x-14=0
a = -1; b = -13; c = -14;
Δ = b2-4ac
Δ = -132-4·(-1)·(-14)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{113}}{2*-1}=\frac{13-\sqrt{113}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{113}}{2*-1}=\frac{13+\sqrt{113}}{-2} $

See similar equations:

| h÷9/6=2/3 | | x+28+113=180 | | 7(x-17)=273 | | 44=231-x | | 12x-2=6(x-4) | | 144-v=257 | | 32=4p+4 | | 9x+4=5(x+3) | | -x+20=186 | | 22=j+19 | | 8y+9=11y | | 23=b+11 | | 7x+3=2(x+2) | | 6u=3u+18 | | 5x-10=9x+3 | | -3=-3+k= | | 12y+3×=3×+24 | | 5t^2-100t=45 | | 7=4q-9= | | 6x=-4-20 | | -3/4c-8=1/8c+20 | | X*2+7x+8=0 | | x2–3x+7=x+52 | | 63/15=12/x | | 2y*2-3y=2 | | 1/2x18=-2 | | 3×+7=2x+8 | | 4x+30=7x-12 | | 4n+1=4n+2. | | 13t+3=68 | | 13x+60-4x+93=180 | | -5(3x+7)-8=17 |

Equations solver categories